“ TOR bound into the primary substrate-binding pocket (S1 binding pocket) of trypsin by hydrophobic forces and affected the function of trypsin by increasing its catalytic activity.”
“The binding of TOR changed the conformational structures and internal micro-environment of pepsin and trypsin by UV-vis absorption, synchronous fluorescence, three dimensional (3D) fluorescence and circular dichroism (CD) spectroscopy.”
“The results showed the polarity around Tyr residues of pepsin or trypsin was changed more obviously than that around Trp residues, the TOR alters the secondary structure of trypsin and pepsin and reduces the β-sheet content of protein, which may affect its physiological function.”